80 research outputs found

    The oligonucleotide frequency derived error gradient and its application to the binning of metagenome fragments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The characterisation, or binning, of metagenome fragments is an important first step to further downstream analysis of microbial consortia. Here, we propose a one-dimensional signature, OFDEG, derived from the oligonucleotide frequency profile of a DNA sequence, and show that it is possible to obtain a meaningful phylogenetic signal for relatively short DNA sequences. The one-dimensional signal is essentially a compact representation of higher dimensional feature spaces of greater complexity and is intended to improve on the tetranucleotide frequency feature space preferred by current compositional binning methods.</p> <p>Results</p> <p>We compare the fidelity of OFDEG against tetranucleotide frequency in both an unsupervised and semi-supervised setting on simulated metagenome benchmark data. Four tests were conducted using assembler output of Arachne and phrap, and for each, performance was evaluated on contigs which are greater than or equal to 8 kbp in length and contigs which are composed of at least 10 reads. Using both G-C content in conjunction with OFDEG gave an average accuracy of 96.75% (semi-supervised) and 95.19% (unsupervised), versus 94.25% (semi-supervised) and 82.35% (unsupervised) for tetranucleotide frequency.</p> <p>Conclusion</p> <p>We have presented an observation of an alternative characteristic of DNA sequences. The proposed feature representation has proven to be more beneficial than the existing tetranucleotide frequency space to the metagenome binning problem. We do note, however, that our observation of OFDEG deserves further anlaysis and investigation. Unsupervised clustering revealed OFDEG related features performed better than standard tetranucleotide frequency in representing a relevant organism specific signal. Further improvement in binning accuracy is given by semi-supervised classification using OFDEG. The emphasis on a feature-driven, bottom-up approach to the problem of binning reveals promising avenues for future development of techniques to characterise short environmental sequences without bias toward cultivable organisms.</p

    Genome classification by gene distribution: An overlapping subspace clustering approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genomes of lower organisms have been observed with a large amount of horizontal gene transfers, which cause difficulties in their evolutionary study. Bacteriophage genomes are a typical example. One recent approach that addresses this problem is the unsupervised clustering of genomes based on gene order and genome position, which helps to reveal species relationships that may not be apparent from traditional phylogenetic methods.</p> <p>Results</p> <p>We propose the use of an overlapping subspace clustering algorithm for such genome classification problems. The advantage of subspace clustering over traditional clustering is that it can associate clusters with gene arrangement patterns, preserving genomic information in the clusters produced. Additionally, overlapping capability is desirable for the discovery of multiple conserved patterns within a single genome, such as those acquired from different species via horizontal gene transfers. The proposed method involves a novel strategy to vectorize genomes based on their gene distribution. A number of existing subspace clustering and biclustering algorithms were evaluated to identify the best framework upon which to develop our algorithm; we extended a generic subspace clustering algorithm called HARP to incorporate overlapping capability. The proposed algorithm was assessed and applied on bacteriophage genomes. The phage grouping results are consistent overall with the Phage Proteomic Tree and showed common genomic characteristics among the TP901-like, Sfi21-like and sk1-like phage groups. Among 441 phage genomes, we identified four significantly conserved distribution patterns structured by the terminase, portal, integrase, holin and lysin genes. We also observed a subgroup of Sfi21-like phages comprising a distinctive divergent genome organization and identified nine new phage members to the Sfi21-like genus: <it>Staphylococcus </it>71, phiPVL108, <it>Listeria </it>A118, 2389, <it>Lactobacillus phi </it>AT3, A2, <it>Clostridium </it>phi3626, <it>Geobacillus </it>GBSV1, and <it>Listeria monocytogenes </it>PSA.</p> <p>Conclusion</p> <p>The method described in this paper can assist evolutionary study through objectively classifying genomes based on their resemblance in gene order, gene content and gene positions. The method is suitable for application to genomes with high genetic exchange and various conserved gene arrangement, as demonstrated through our application on phages.</p

    Unsupervised discovery of microbial population structure within metagenomes using nucleotide base composition

    Get PDF
    An approach to infer the unknown microbial population structure within a metagenome is to cluster nucleotide sequences based on common patterns in base composition, otherwise referred to as binning. When functional roles are assigned to the identified populations, a deeper understanding of microbial communities can be attained, more so than gene-centric approaches that explore overall functionality. In this study, we propose an unsupervised, model-based binning method with two clustering tiers, which uses a novel transformation of the oligonucleotide frequency-derived error gradient and GC content to generate coarse groups at the first tier of clustering; and tetranucleotide frequency to refine these groups at the secondary clustering tier. The proposed method has a demonstrated improvement over PhyloPythia, S-GSOM, TACOA and TaxSOM on all three benchmarks that were used for evaluation in this study. The proposed method is then applied to a pyrosequenced metagenomic library of mud volcano sediment sampled in southwestern Taiwan, with the inferred population structure validated against complementary sequencing of 16S ribosomal RNA marker genes. Finally, the proposed method was further validated against four publicly available metagenomes, including a highly complex Antarctic whale-fall bone sample, which was previously assumed to be too complex for binning prior to functional analysis

    Gene functionality's influence on the second codon: A large-scale survey of second codon composition in three domains

    Get PDF
    AbstractThe second codon of a transcript, besides encoding for an amino acid, is now known to also have multiple molecular functions and is involved in translation efficiency and protein turn-over and maturation processing. These multiple purposes therefore make the selection constraints on this codon's composition more complex. To examine the biological significance of various permutations of the second codon, we conducted a systematic survey of second codon composition from 442 selected genomes across three domains. The amino acid bias of the second codon is associated with specific protein functions. The most common amino acids (S, A, K and T) are significantly avoided in Cell Envelope-related genes but preferred in Translation or Energy Metabolism-related genes, suggesting that the function of a gene product is a significant factor influencing the composition of the second codon

    Gene function prediction based on genomic context clustering and discriminative learning: an application to bacteriophages

    Get PDF
    BACKGROUND: Existing methods for whole-genome comparisons require prior knowledge of related species and provide little automation in the function prediction process. Bacteriophage genomes are an example that cannot be easily analyzed by these methods. This work addresses these shortcomings and aims to provide an automated prediction system of gene function. RESULTS: We have developed a novel system called SynFPS to perform gene function prediction over completed genomes. The prediction system is initialized by clustering a large collection of weakly related genomes into groups based on their resemblance in gene distribution. From each individual group, data are then extracted and used to train a Support Vector Machine that makes gene function predictions. Experiments were conducted with 9 different gene functions over 296 bacteriophage genomes. Cross validation results gave an average prediction accuracy of ~80%, which is comparable to other genomic-context based prediction methods. Functional predictions are also made on 3 uncharacterized genes and 12 genes that cannot be identified by sequence alignment. The software is publicly available at http://www.synteny.net/. CONCLUSION: The proposed system employs genomic context to predict gene function and detect gene correspondence in whole-genome comparisons. Although our experimental focus is on bacteriophages, the method may be extended to other microbial genomes as they share a number of similar characteristics with phage genomes such as gene order conservation

    Using Growing Self-Organising Maps to Improve the Binning Process in Environmental Whole-Genome Shotgun Sequencing

    Get PDF
    Metagenomic projects using whole-genome shotgun (WGS) sequencing produces many unassembled DNA sequences and small contigs. The step of clustering these sequences, based on biological and molecular features, is called binning. A reported strategy for binning that combines oligonucleotide frequency and self-organising maps (SOM) shows high potential. We improve this strategy by identifying suitable training features, implementing a better clustering algorithm, and defining quantitative measures for assessing results. We investigated the suitability of each of di-, tri-, tetra-, and pentanucleotide frequencies. The results show that dinucleotide frequency is not a sufficiently strong signature for binning 10 kb long DNA sequences, compared to the other three. Furthermore, we observed that increased order of oligonucleotide frequency may deteriorate the assignment result in some cases, which indicates the possible existence of optimal species-specific oligonucleotide frequency. We replaced SOM with growing self-organising map (GSOM) where comparable results are obtained while gaining 7%–15% speed improvement

    Binning sequences using very sparse labels within a metagenome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In metagenomic studies, a process called binning is necessary to assign contigs that belong to multiple species to their respective phylogenetic groups. Most of the current methods of binning, such as BLAST, <it>k</it>-mer and PhyloPythia, involve assigning sequence fragments by comparing sequence similarity or sequence composition with already-sequenced genomes that are still far from comprehensive. We propose a semi-supervised seeding method for binning that does not depend on knowledge of completed genomes. Instead, it extracts the flanking sequences of highly conserved 16S rRNA from the metagenome and uses them as seeds (labels) to assign other reads based on their compositional similarity.</p> <p>Results</p> <p>The proposed seeding method is implemented on an unsupervised Growing Self-Organising Map (GSOM), and called Seeded GSOM (S-GSOM). We compared it with four well-known semi-supervised learning methods in a preliminary test, separating random-length prokaryotic sequence fragments sampled from the NCBI genome database. We identified the flanking sequences of the highly conserved 16S rRNA as suitable seeds that could be used to group the sequence fragments according to their species. S-GSOM showed superior performance compared to the semi-supervised methods tested. Additionally, S-GSOM may also be used to visually identify some species that do not have seeds.</p> <p>The proposed method was then applied to simulated metagenomic datasets using two different confidence threshold settings and compared with PhyloPythia, <it>k</it>-mer and BLAST. At the reference taxonomic level Order, S-GSOM outperformed all <it>k</it>-mer and BLAST results and showed comparable results with PhyloPythia for each of the corresponding confidence settings, where S-GSOM performed better than PhyloPythia in the ≥ 10 reads datasets and comparable in the ≥ 8 kb benchmark tests.</p> <p>Conclusion</p> <p>In the task of binning using semi-supervised learning methods, results indicate S-GSOM to be the best of the methods tested. Most importantly, the proposed method does not require knowledge from known genomes and uses only very few labels (one per species is sufficient in most cases), which are extracted from the metagenome itself. These advantages make it a very attractive binning method. S-GSOM outperformed the binning methods that depend on already-sequenced genomes, and compares well to the current most advanced binning method, PhyloPythia.</p

    CONTRA: copy number analysis for targeted resequencing

    Get PDF
    Motivation: In light of the increasing adoption of targeted resequencing (TR) as a cost-effective strategy to identify disease-causing variants, a robust method for copy number variation (CNV) analysis is needed to maximize the value of this promising technology
    corecore